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Thermal transport far from equilibrium



f (ω)=f 0(ω)=
1

eℏω/kBT−1

In equilibrium, phonons 
follows the Bose-Einsten 
distribution function

x=
ℏω

kBT

f (x)

Equilibrium
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Homogeneous temperature T 



f 0(ω , x)=
1

eℏ ω/kBT (x)−1

When inhomogeneties appear 
inside the system a global 
temperature T is no longer
a good magnitude to describe the
system

If these are not large a local 
equilibrium temperature T(x) 
can be defined

Local equilibrium

Inhomogeneous temperature T(x) 

x=
ℏω

kBT
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Sometimes the excitation of the 
distribution function cannot be 
expressed by a single parameter 
like a local temperature

f= f 0+Δ f

Δ f (k , x , t)?

Which are the equations 
that determine the 
evolution of the excitation

Far from equilibrium

Δ f
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Boltzmann Tranport Equation (BTE)

∂
∂ t
+v⋅∇ f=(∂ f∂ t )col

The Boltzmann Transport Equation determines the spatial 
and temporal evolution of the distrubution fumction 

Starting from an initial 
condition, the distribution 
function changes in time
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Phonon group velocity



Extended Irreversible Thermodynamics



From phonons to moments M i(x , t)f (κ , x , t )

ϵ(x , t )=∫ ℏωk f (κ , x , t)
d3 k

(2π)3

q(x , t)=∫ℏωk v⃗g f (κ , x , t )
d3k

(2π)3

Q (x , t )=∫ ℏωk (v⃗gx1
⋅v⃗gx2

) f (κ , x , t)
d3k

(2π)3

Zero order: energy density

First order: heat flux

Second order: flux of the flux

Qn
(x , t)=∫ℏωk ( v⃗gx1

· · · ⃗vgxn) f (κ , x , t)
d3k

(2π)3
n-order moment

Moments of the distribution

...
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Change to moment description

M i(x , t)=∫κ · · ·κ f (κ , x , t )

ΔT (x , t ) , q⃗(x , t ),Q(x , t)
n equations for the n moments
Grad/Chapman-Enskog equations

n equations for the n modes: 
Boltzmann Transport Equation

The experimental results are almost always the moments:
Temperature, fluxes, etc...

Changing to moment equations

f (κ , x , t )

BTE output

Thermodynamic output
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Moments needed for the description

Depending on the imposed conditions we may need higher number 
of orders to describe the system
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Extended Irreversible Thermodynamics (EIT)

Extended Irreversible Thermodynamics (EIT) allows 
the description of any number of moments

Zero Order Eq.

First Order Eq.

Second Order Eq.

n-Order Eq.

Temperature Heat Flux
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First order: Fourier Law

Zero Order Eq.

First Order Eq.

Second Order Eq.

n-Order Eq.

Taking only the terms to first order we recover the 
Fourier Law

C v
dT
dt
=−∇⋅q

q⃗=−λ∇ T

Energy Conservation

Fourier Law
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Second order: Guyer-Krumhansl equation

Zero Order Eq.

First Order Eq.

Second Order Eq.

n-Order Eq.

Taking only the terms to second order we recover 
the Guyer-Krumhansl equation

C v
dT
dt
=−∇⋅q

q⃗=−λ∇ T+l2∇ 2q

Energy Conservation

Guyer-Krumhansl equation
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Alvarez and Jou, APL 90, 83109 (2007)

λ=λ0

−1+√1+(ξ l)2

1/2(ξ l)2

Continued fraction approach
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λ=
λ0 L

2

2π2 l2 [√1+4( π lL )
2

−1]

λ=λ0

−1+√1+(ξ l)2

1/2(ξ l)2

ξ=
2π
L

Alvarez and Jou, APL 90, 83109 (2007)

Nonlocalities give an interpretation for the reduction of 
effective thermal conductivity at the nanoscale

Application to nanowires
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The reduction is due to the 
inhomogeneous heating in 
combination with the laplacian 
term. No boundaries 

Minnich et al, PRL 107, 
095901 (2011)

Application TDTR experiments

Reduction of the effective thermal conductivity with the 
laser spot radius.

l2∇2q
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Alvarez and Jou, JAP 103, 94321 (2008).

λ=λ0

−(1+iω τ)+√(1+iω τ)2+(kl)2

1/2(kl)2

Memory also 
changes the 
effective thermal 
conductivity.

Higher 
excitation 
frequencies give 
smaller thermal 
conductivities

Memory effects
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Regner et al, Nat. Comm. 4, 1640 (2013)
Koh and Cahill, PRB, 76, 075207 (2007)

Application to TDTR experiments

Experimental evidence of the reduction of the effective 
thermal conductivity with excitation frequency
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Fourier law can be extended by including 
memory and nonlocal effects 

The number of terms needed depend on how 
far we are from local equilibrium

Take Home Idea



Phonon Hydrodynamic Equations



  

                                          Acts as a friction term

τ q̇+q=−λ∇ T+l2(∇2q+2∇∇⋅q)

Phonon hydrodynamic equation

v̇=−
1
ρ ∇ p+(ν∇2 v+ ν

3
∇(∇⋅v))

Navier-Stokes equation

Guyer-Krumhansl equation

Similarities between GK and NS equations
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l2(∇2q+2∇∇⋅q)



  

qb=−C l
dq
dr

Alvarez, Jou and Sellitto, JAP 105, 14317 (2009).
Sellitto, Alvarez and Jou, JAP 107, 114312 (2010).
Alvarez, Jou and Sellitto, J. Heat Transfer 133, 22402 (2011).

Boundaries

GK equation should be combined with the 
proper boundary conditions to obtain a solution
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qb=−C l
dq
dr C=

2−σ
σ

For specular boundary:
 

For diffuse boundary:
 σ→1 ;C→1

σ→0 ;C→∞

Specularity
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Fourier limit

Reduction of the flux
near the surface

In the limit of small Knudsen number the obtained profile is very 
similar to a Fourier profile with a reduction near the surface

λeff=
∫q (r)dA
A∇ T

Boundary effect L>>l
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l=100 nm
L=10000 nm



λeff=
∫q (r)dA
A∇ T

Boundary effect L>>l

Fourier limit

Reduction of the flux
near the surface

l=100 nm
L=10000 nm
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λeff=
∫q (r)dA
A∇ T

Boundary effect L~l

If the Knudsen number increases, the reduction is noticed in a 
larger region of the wire

l=100 nm
L=1000 nm

l=100 nm
L=100 nm
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In the limit of high Knudsen number the obtained profile is very 
similar to an effective Fourier profile

Fourier limit

Flat Fourier profile

λeff=
∫q (r)dA
A∇ T

Boundary effect L<<l
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l=100 nm
L=10 nm



Hydrodynamic model allows a description of nanoscale simple 
geometries

Predictions for nanowires

Kn→∞ Kn→0Kn≈1 Kn=
l
L
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The hydrodynamic equation gives a simple 
picture of the reduction of heat transport 

Boundary conditions are key to understand 
reduced size samples

In hydrodynamic models the way to 
incorporate this is through the slip flow 

condition

Take Home Idea



Alvarez, Jou and Sellitto, JAP 105, 
14317 (2009).
Sellitto, Alvarez and Jou, JAP 107, 
114312 (2010).
Alvarez, Jou and Sellitto, J. Heat 
Transfer 133, 22402 (2011).

Hydrodynamic model



Exact Solutions of the BTE



( ∂∂ t +v⋅∇ ) f=(∂ f∂ t )col

(∂ f∂ t )col=∬ f q⃗1
f q⃗2 ( f q⃗3

+1)Γ q⃗1 q⃗2

q⃗3 −( f q⃗1
+1) ( f q⃗2

+1 ) f q⃗3
Γq⃗3

q⃗1 q⃗2d q⃗2d q⃗3

f is a nonequilibrium function depending on q

Boltzmann equation is generally nonlinea

Anharmonic processesq⃗1

q⃗2

q⃗3

q⃗1

q⃗2

q⃗3

Anharmonic effects in collision term
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D q⃗ f q⃗=C q⃗ f q⃗ '

(∂ f∂ t )col=∬ (Φq⃗1
+Φq⃗2

−Φq⃗3 )Pq⃗1 q⃗2

q⃗3 d q⃗2d q⃗3

Φq⃗1
≠0 Φq⃗2

=0 Φq⃗3
=0

D q⃗ f q⃗=∑⃗
q '

C q⃗ , q⃗ ' f q⃗ '

∂ f
∂ t
+v⋅∇ f q⃗=

f q⃗− f q⃗ 0
τ q⃗

Relaxation time approximation (RTA)

Diagonal in q

Diagonal in q Diagonal in q

Nondiagonal in q

Linearized 
collision term

RTA collision 
term

(∂ f∂ t )col=∬Φq⃗1
Pq⃗1 q⃗2

q⃗3 d q⃗2d q⃗3
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Failures of RTA

Materials 
where normal 
scattering is 
important

Samples 
where 
boundary 
scattering is 
important
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f ⃗q(i+1)=f q⃗ i+τ q⃗ i( ∂∂ t +v∇ ) f q⃗i

Significant improvement for bulk materials Ward et al. PRB 80, 125203 (2009)

Iterative BTE (IBTE)
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Li et al. PRB 85, 195436 (2012)

Iterative BTE (IBTE)
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∑k⃗ '
D k⃗ k⃗ ' f k⃗=C k⃗ f k⃗ '

Non-diagonal in k Diagonal in k

D q⃗ f q⃗=∑q⃗ '
C q⃗ , q⃗ ' f q⃗ '

k⃗=∑q⃗ '
A q⃗ q⃗ ' q⃗ '

In steady state it can be solved 
because D simplifies

Cepellotti and Marzari , PRX, 6(4), 41013 (2016)

Linearized BTE – Relaxons. R-LBTE
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Can we find a solution of the BTE that 
simplifies the collision term without 

complicate in excess the drift term? 

Objective
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Kinetic Collective Model



∂ f
∂ t
+v⋅∇ f=(∂ f∂ t )col

D f=(R+N ) f

(
D00 D01 0
D10 D11 D12

0 D21 D22
)(
a0

a1

a2
)=((

0 0 0
0 R11 R12

0 R21 R22
)+(

0 0 0
0 0 0
0 0 N 22

))(
a0

a1

a2
)

Split the collision term in two: R/N

Momentum basis

Diagonalizes Normal scattering

Guyer-Krumhansl
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a1=(R11+R12(R22+N22)
−1R21)

−1
D10a0

For a bulk homogeneous system in steady state

Kinetic Regime 

a1=(R11+R12R22
−1R21)

−1
D10a0

Collective Regme 

a1=R11
−1D10a0

(R−1 )11D10a0=a1
D10a0=R11a1

q⃗=−κkin∇ T q⃗=−κcol∇ T

q⃗=−κ∇ T

N 22=∞N 22=0

Guyer-Krumhansl
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April 24

Scattering Rates

Non-Resistive
Normal

Resistive
Umklapp
Impurity
Boundary

Relaxation times

Relaxation times from ab-initio calculations
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⃗qkin /col=−κkin/col∇ T

Rkin  
1

1
11























v

Rv

Rcol
C

C 


κkin /col=∫
1
3
C v v

2
τkin/col

Predictions for nanowires
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       Kinetic        Collective



Entropic justification. Kinetic Term

De Tomas et al. JAP 115, 164314 (2014)



Entropic justification. Collective Term

De Tomas et al. JAP 115, 164314 (2014)



KCM captures most o the anharmonic effects through 
the proper treatment of Normal Scattering

Predictions for nanowires
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In a general case 

q⃗=−((1−Σ)κkin+Σκcol )∇T
Σ=

1

1+
τN
τkin

%

Remarkable agreement with bulk data

Predictions for bulk
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Form factor modulates the 
profile of the collective 

contribution 

The kinetic contribution is 
reduced by the combination 
of the boundary term with 
the rest of the collisions

1
τ=

1
τ I
+
c
L

τ q̇+q=−λ∇ T+l2(∇2q+2∇∇⋅q)

qb=0

Predictions for nanowires
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In combination with hydrodynamic model 
Good prediction for nanoscale experimental data

Predictions for nanowires
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Improvements of KCM

The same simplicity as RTA with improved performance
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Overview of KCM results
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http://physta.github.io

KCM package for phonopy
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Complex Geometries



  

Thermal Grating Experiment

Johnson et al. PRL 110, 025901 (2013) 

The decay rate depend on the heating wavector 
q=2/L
In Fourier model the dependance is quadratic
Experimental results show nonquadratic 
behaviour
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Nonlocal
correction due 
to periodic 
heating

Nonlocal
correction due 
to boundary 
effect

∇ 2q(x)

qb=−C l
dq
dy∇ T

q ( y)

Thermal Grating in the KCM
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(2/L)² (m)

 
(n

s
¹) ⁻

The combination 
of effects allows 
to explain the 
experimental 
results

Thermal Grating in the KCM
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10 m

Width: 100nm - 10µm
Length/Width ratio = 40
Spacing: 0.3, 0.5, and 20µm
Both InGaAs and Si were studied

Nano-Heater 
Lines

Static and Transient TR imaging

A. Ziabari et al. (submitted)

Objective:
Obtain the thermal profile

Thermo Reflectance Imaging (TRI)
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Thermometer
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Thermo Reflectance Imaging (TRI)
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Δ
T

 (
K

)

Position (µm)

κ nominal
Experimental 265nm

Nominal value of the thermal conductivity (=5.5 W/mK)
Underpredict the heater and overpredict the thermometer

Fourier modelization of TRI experiment 
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Experimental 265nm

Reducing the conductivity to fit the heater te (=4.5 W/mK)
We obtain a larger overprediction in the thermometer

Fourier modelization of TRI experiment 
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Δ
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 (
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)

Position (µm)

κ fit therm
Experimental 265nm

Increasing the conductivity to fit the thermometer (=6.7 W/mK)
We obtain a larger underprediction in the heater

Fourier modelization of TRI experiment 
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Δ
T
 (

K
)

Position (µm)

κnominal
κfit heater
κfit therm

Experimental 265nm

There is not a single value for the thermal conductivity
That works in the entire domain for Fourier 

Fourier modelization of TRI experiment 
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TDTR experiments
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q−l2

(∇
2q+2∇∇ q)=−κ∇ T

KCM allows the prediction of heater and thermometer 
with the same values of  and l

 0
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Δ
T
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)

Position (µm)

κ heater
KCM l=150nm

Experimental 265nm

KCM modelization of TRI experiment 
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KCM predictions for different lines

10 m 265 nm5 m 1 m 480 nm

Heater width
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Near the heater the 
effective thermal 
conductivity is reduced 
due to a large value of  
the nonlocal term 

Far from the heater the 
bulk thermal 
conductivity is restored 
as nonlocal correction 
is negligible

+

Vorticity effects
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Heater

Substrate (Si)

|q|
|∇ T|

Effective thermal conductivity

Near the heater the 
effective thermal 
conductivity is reduced 
due to a large value of  
the nonlocal term 

L

Far from the heater the 
bulk thermal 
conductivity is restored 
as nonlocal correction 
is negligible

q−l2∇2 q=−κ∇ T

+

KCM as a boundary
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EIT allows the treatment of far from equilibrium situations by the inclusion om 
nonlocal and memory effects

The number of terms to describe an experiment depend on the complexity of 
the nonequilibrium excitation

The hydrodynamic model (second order approach) allows the prediction of a 
large number of experimental results at the nanoscale

KCM is a method to treat anharmonicities in the phonon collision term in a 
simple way

KCM gives a remarkable agreement with experimental results with a 
considerable reduction in the calculation requirements respect other ab initio 
approaches

KCM + Hydrodynamic model allows the prediction of complex geometries due 
to its simplicity

Conclusions



Thank You!
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