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( and Intrinsic localized modes of phonons)  
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Introduction  
  
Basic concepts of the theory of one-particle localization 
(Andrson Model) 
 
Brief review of the Weak Localization 
 
Spectral and LDOS Statistics 
 
Localization Length 
 
Non-Linear Wave Equation and Phonon Localization 
(Intrinsic localized modes of phonons)   
 
•  See Altshuler’s lecture notes and Binninger’s notes 

•  Disorder and interference: localization phenomena, C.A. M�uller and 

D.Delandey arXiv:1005.0915v3   
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Quantum percolation!  



















Tarquini et al. PRL 116, 010601 (2016) 
Equation for mobility edge in terms of disorder properties   



Tarquini et al. PRL 116, 010601 (2016) 
Equation for mobility edge in terms of disorder properties   
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There are extended states  All states are localized  
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One parameter scaling theory 
of Anderson localization    
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Localization Length  





Z(n) = Tn Tn�1 · · ·T1 Z(1)



Borland conjecture 

Reza Sepehrinia, et al. PRB78, 024207  































 
                                                                        localization of elastic 
                                                                        waves, PRB 78, 024207  
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Sahimi et al. Acta Mech 205, 197 (2009) 



Distribution of the local density of states 
 as a criterion for Anderson localization: 

Schubert, et al. PRB81, 155106 (2010) 



•  Numerical approaches to Anderson localization 
face the problem of having to treat large 
localization lengths while being restricted to finite 
system sizes.  

•  It is shown that the system-size dependence of 
the LDOS distribution is sign of Anderson 
localization, irrespective of the dimension and 
lattice structure. 

 
 
•  The numerically obtained exact LDOS data is  

agree with a log-normal distribution over up to ten 
orders of magnitude 

 

Distribution of the local density of states 
 as a criterion for Anderson localization: 



 Exact diagonalization  ED  Kernel Polynomial Method  KPM  







Classical Wave Localization  



Problem: Electrons interact  
With each other   













Random mass 

PRB78, 134206  (2008) 



Random spring constants  

PRL  94, 165505 (2005)  
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Elastic wave localization  
 

Martin-Siggia-Rose action 
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             The Model (Scalar Field) 
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 Propagation of Wave Component with Frequency ω 
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  Two coupling constants: 
 
    g0=D0/λ0

2,      gρ= Dρ/λρ2 

 
  RG analysis to one-loop order in the limit, ω2/λ0 → 0,  to determine the two 
    beta functions. 

 The Martin-Siggia-Rose Action 
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 Diagrammatic Representation and One-Loop Corrections 
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The Beta Functions 
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Three sets of fixed points for 0 <ρ < d/2: 
 

  Trivial FP (Gaussian) at g0* = gρ* = 0 (stable) 
 

  Non-trivial FPs, one at g0* = d/8, gρ* = 0, and the other at 
 

Stable in one eigendirection, but unstable in the other 
eigendirection. 

Phase Space and Fixed Points 
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 Thus, a system with uncorrelated disorder is unstable 
   against disorder with long-range correlations towards 
   a new FP. 
 
 
  Thus, with increasing disorder, extended → localized 
 
 

Phase Space (Continued) 
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Phase Space (Continued) 
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Two sets of fixed points for ρ > d/2: 
 

 

  Gaussian FP,  stable on the g0 axis, but not on the gρ axis 
 
 

  Non-trivial FP at g0* = d/8, gρ* = 0, unstable in all 
    directions. 
 
  Thus, power-law disorder relevant, but no new FP. 
 
  Long-wavelength behavior determined by long-range 
    correlations. 
 

Phase Space (Continued) 
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Phase Space (Continued) 
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Frequency-Dependence of Localization Length 



101	

Wave Front 
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  Computing the correlation function 
 

C(r) = < [d(x) - d(x + r)]2 > 
 

    d(x) = distance from the source along the propagation direction 
 

C(r) ~ r2α  
 

 α = H = ρ-1  
 
 
 

S. M. Vaez Allaei and M. Sahimi, PRL 96, 075507 (2006). 
 

  

Roughness of Wave Front: Self-Affine Fronts 
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H=0.3 H=0.75 

The Shape  of Wave Front and its Evolution 
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Intrinsic localized phonon 
modes 

at a nonlinear lattice  



ü   Energy localized vibration in nonlinear lattices is 
known as intrinsic localized mode. 

 

ü  The intrinsic localized mode can move without 
decaying its energy concentration. 





Two non-linear oscillators    

Different amplitudes results in different frequencies   

For strictly incommensurate frequencies, no possible 
resonances exist between any of the oscillators’  harmonics. 

The Kolmogorov-Arnold-Moser (KAM) theorem of 
nonlinear dynamical systems, which establishes that the 
incommensurate motions do remain rigorously stable for 
sufficiently weak coupling and ensures that the excitation 
energy remains localized on the first oscillator. 

with p and q 
being two co-prime 
positive integers. 
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Phonons dispersion 
relation   





Intrinsic localized modes (ILMs), also known as 
discrete breathers (DBs),  are, in fact, typical excitations in 
perfectly periodic but strongly nonlinear systems. 

Hence, there will be no possibility of a linear coupling to the 
extended modes, even in the limit of an infinite system when 
the spectrum ω_q becomes dense. This means that the ILM 
cannot decay by emitting linear waves (that is, phonons) and 
is hence linearly stable. (1D,2D and 3D) 

Discrete intrinsic localized modes in a microelectromechanical resonator 
https://arxiv.org/abs/1610.01370	
	
Using the combination of Laser Doppler Vibrometry (LDV) and 
piezoelectric driving, they observe the two-dimensional transport of 
ILMs on mechanical structure.	



 
This intuitive understandingof the origin of ILMs/DBs in discrete 
nonlinear systems was presented in the pioneering paper of Albert 
Sievers and Shozo Takeno in 1988.  
 
Robert MacKay and Serge Aubry, for example, rigorously proved 
the existence of DBs in networks of weakly coupled anharmonic 
oscillators. 
 

 Theoretical studies by Ding Chen (Saclay) and his collaborators 
 gave an explicit algorithm for moving ILMs along the lattice, and 
calculations of Michel Peyrard (ENS, Lyon) established that ILMs can 
be generated from thermal fluctuations. 



The Chen and Peyrard results suggest that ILMs may play 
critical roles in the transport of energy and other dynamical 
properties of nonlinear discrete systems, such as melting 
transitions in solids and folding in polypeptide chains. 

The conformational changes and buckling of long biopolymer 
 molecules may occur in response to the excitation of nonlinear 
 localized modes. 





•  A.S. Dolgov, Sov. Phys. Solid State 28, 907 (1986). 
•  A.J. Sievers and S. Takeno, Phy. Rev. Lett. 61, 970 (1988). 
•  S. Takeno and A.J. Sievers, Sol. St. Comm. 67, 1023 (1988). 
•  D. K. Campbell, et al. Localizing Energy Through Nonlinearity 

and Discreteness, Physics Today 57 , 1, 43 (2004).  
•  Discrete breathers — Advances in theory and applications 
S. Flach and A.V. Gorbach, Physics Reports 467 (2008) 1–116. 



Phonon life time (EXP.) 

The time-resolved sum frequency generation (TR-SFG) 

⌧ ⇠ 1ps

http://web.vu.lt/ff/m.vengris/images/TR_spectroscopy02.pdf 
   M. Smits 2007 New J. Phys. 9 390 
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