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« See Altshuler’s lecture notes and Binninger’s notes

- Disorder and interference: localization phenomena, C.A. Muller and



Almost 60 years of Anderson Localization

PHYSICAL REVIEW VOLUME 109, NUMBER 5 MARCH 1, 1958
-

Absence of Diffusion in Certain Random Lattices

P. W, ANperson
Bell Tdephone Laboratories, Murray Hill, New Jersey

{Received October 10, 1957)

This paper presents a simple model for such processes as spin diffusion or conduction in the “impurity
band.” These processes involve transport in a lattice which is in some sense random, and in them diffusion
is expected to take place via quantum jumps between localized sites. In this simple model the essential
randomness is introduced by requiring the energy to vary mandomly from site to site. It is shown that at low
enough densities no diffusion at all can take place, and the criteria for transport to oocur are given,




...verT few believed it
[localization] at the time,
and even fewer saw its
importance; among those
who failed to fully
understand it at first
was certainly its author...

Nobel Lecture

Nobe! Lecture, December 8, 1977

Local Moments and Localized States



How does a density fluctuation (wave packet) spread ?



Diffusion
Equation

Diffusion
constant

Can be density of particles or energy density.
P (T,l) It can also bey'rhe ppr'obabili‘l'y to firg\c)il a Y
particle at a given point at a given time

Einstein theory
of Brownian
motion, 1905

The diffusion equation is valid for any random walk
provided that there is no memory (markovian process)



Einstein (1905): <r2> = Dt
Random walk

J

always diffusion

as long as the system
has no memory

Anderson(1958): It might be that

For quantum <r2> ;
particles

[l D=0

£ not always!
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Quantum interference =» memory Why : J[ .




Basic Quantum Mechanics:
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Continuous Discrete
Unbound states Bound states
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L System size

d  Number of the spatial dimensions



Localization of

one-particle [—va + U(?)lz/;a(F)= Eaz/Ja(?)

wave-functions: 2m
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Diffusion Constant

Density of states

Extended states:

G - Ld—2;
O'L—_)m)COTISt; DL—_)w>C0nSt

Localized states:

Gxe o=0. D=0




Anderson Model



¥ Scattering centers,
e.g., impurities

Models of disorder:

Randomly located impurities
White noise potential

Lattice models
Anderson model
Lifshits model

Noninteracting electrons



Anderson * Lattice - tight binding model
Model * Onsite energies E;-random

« Hopping matrix elements | ii

I Il and { are nearest
0

neighbors

0 otherwise

Anderson Transition 8 = f(d)=Ww

<1 ¢ I1>1 .
Insulator Metal

All eigenstates are localized There appear states extended
Localization length C all over the whole system




One-dimensional Anderson Model




Why arbitrary PP PP
= weak hopping I is ? ©® e 48

not sufficient for : : : :
o .

the existence of =® ®i® ®i®

the diffusion &

Einstein (1905): Marcovian (no memory)
process —> diffusion

uantum mechanics is not marcovian '
There is memory in quantum propagation .

Why 7



Hamiltonian
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Hamiltonian
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n )i R
H=(81 ) [ El 0
I ¢ 0 E,

E,—& &,—€&>>1

E,~E =(e,—e )+ -

von Neumann & Wigner “noncrossing rule”

£,—& << 1

Level repulsion

v. Neumann J. & Wigner E. 1929 Phys. Zeit. v.30, p.467

What about the eigenfunctions ?



A g 1 E,—& &E,—& >>1
H=(l ) Ez_El=\/(‘92_'91)2"'12zI2 o

I & £,—& <<1I
What about the eigenfunctions ?
ﬂ7€1;¢2982 <~ ?/jlaE];?/jzaEz

£, —& >> 1 g,—& <<1I
y of—*
12 =@, T @5 1 s
&, — & 1/)1,2 =@, TP,
Off-resonance Resonance
Eigenfunctions are In both eigenstates the
close to the original on- probability is equally

site wave functions shared between the sites
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Anderson insulator
Few isolated resonances
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Anderson metal
There are many resonances

Anderson insulator

Few isolated resonances

and they overlap
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SeCe
*one evg! pei'i site, @@@@
-zgilr?.eesf lzglr'ghel::‘or' hoping @@@@
Basis: ‘l>, [ labels sites @@@@

W =¢ <W —random



Anderson’s recipe:

Consider a closed N <o number of sites
finite system: = number of quantum states E,.y_ (i)

N
Global density of states v(E)=N"Y o(E-E,)

a=

Broadening: 5(E_Ei)=6”(E—Ei)=lIm : :
x E-E -in
N —-x first Global density of states v(£) becomes

Limits: n—0 afterwards a continuous and smooth function

_ N N2 1
Local density of states "’(E”)Ezé(E_Ea)’w“(’)’ e
After taking the limits:

I=0 "’/’a (i)|2 =0,,.E, =¢ ImG;, (E)=n6(E-¢,) :iee'lr'r:ffuncfions

W =0 Local density of states is a continuous and smooth function






Anderson’s recipe:
1. take discrete spectrum ¢, of H,

-

insulator

AL

2. Add an infinitesimal Im part i7 to &,

imaginary part of the
3. Evaluate ImZL renormalized energy

[Im Gii(E+is)]

lim
S0+

%4 @ .:‘ @ -
: E S @ HN— e
a E € ltmltsz)n_)o

<#

4. take limitz7 — O but only after N — E— metal
5. “What we really need to know is the ' L P
E

probability distribution of Im2, not
its average...” P.W. Anderson Nobel Lecture




Probability Distribution of I =Im 2

7 is an infinitesimal width (Im
part of the self-energy due to
a coupling with a bath) of
one-electron eigenstates

x 1/n

NSRSt 0; insulator

> 0;  metal
lim lim P(I' >0) =



Probability Distribution of I =Im 2

7 is an infinitesimal width (Im
part of the self-energy due to
a coupling with a bath) of
one-electron eigenstates

x 1/n

NSRSt 0; insulator

> 0;  metal
lim lim P(I' >0) =
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Anderson insulator Anderson metal
Few isolated resonances There are many resonances

and they overlap

_ Typically each site is in the
resonance with some other one




Anderson Transition

I1>1 I<I

localized and extended
never coexist!
€

L
s

Q\\\

all states are
localized

=7

DoS

- mobility edges (one particle)

Tarquini et al. PRL 116, 010601 (2016)
Equation for mobility edge in terms of disorder properties
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Tarquini et al. PRL 116, 010601 (2016)
Equation for mobility edge in terms of disorder properties



Temperature dependence of the conductivity
one-electron picture

There are extended states All states are localized



LOCALIZATION TRANSITION IN THE ANDERSON MODEL
ON THE BETHE LATTICE: SPONTANEOUS SYMMETRY
BREAKING AND CORRELATION FUNCTIONS

Alexander D. MIRLIN

Leningrad Nuclear Physics Institute, 188350 Gatchina, Leningrad District, USSR

Yan V. FYODOROV

Leningrad Nuclear Physics Insticute, 188350 Gatchina, Leningrad District, USSR and
Unirersitat Gesamthochschule Essen, Fachbereich Physik, D-4300 Essen, Germany

Recewved 21 June 1991

We present the complete analytical solution of the Anderson model on the Bethe lattice,
Within the scope of the supersymmetric approach the delocalization transition manifests itself as
a spontancous breaking of the UOSP(2,2 /2, 2) invariance and can be described by means of the
order-parameter function. We attribute a clear physical meaning to this function providing the
explicit connection with the known behaviour of Green functions in disordered systems. Apart
from reproducing the known results for the position of the mobility edge, we calculate the
density—density correlation function in both localized and extended phases. The found critical
behaviour contradicts to the one-parameter scaling hypothesis. in agreement with results
obtained in the framework of the supermatrix a-model on the Bethe lattice.

Nuclear Physics B366 (1991) 507-532 NUCLEAR

North-Holland

PHYSICS B



Low dimensions:

weak localization



WEAK LOCALIZATION

The particle

¢ / p dr > can o around
the loop in

Phase accumula‘red fwo dlr'echons

when traveling

along the loop

Memory'
2

Constructive m'l'er'fer'ence - probability to return
to the origin gets enhanced =——= quantum corrections

reduce the ditfusion constant.
Tendency towards localization



Magneforesns‘l'ance

oL G

No magnetic field With magnetic field H
P=9; 9~ @~ 2%2m /D,




One parameter scaling theor

of Anderson localization



Classical particle in a random potential m

1 particle - random walk
Density of the particles p

Density fluctuations p(r.,f) at a
given point in space r and time .

6,0 2 Diffusion
ot —DV P Equation
D - Diffusion constant 1

| mean free path —=5n,,

I? [
D=— 7T mean free time
dT Cross-section Impurityt

d  # of dimensions

concentration




Thouless Conductance

Einstein Relation for

electric conductivity O

o=e’Dv Eﬂ

2 z
€ nDh e

G = gl remmn = 3 E ) = 0

for a cubic sample

of the size L

Thouless energy !l)';’lrgﬁ?essign'ess

~ mean level spacing conductance




Thouless Conductance

2
e
G - (L) ol A
h ny
Thouless energy Dimensionless

g(L)= mean level spacing | houless conductance

Thouless Energy
hD

E.=— . Inverse escape time
T L2

Extra energy scale as

' : Dimensionless
compared with the generic =>
Random Matrix theory parameter



rD/I* E,  Thouless energy

1/vL’ 6, mean level spacing

g(r)=
Corrections to the diffusion

Thouless conductance .
is Dimensionless come from the Iarge distances
(infrared corrections)

%/_—/

Scaling theory of Localization
(Abrahams, Anderson, Licciardello and Ramakrishnan, 1979)

Universal description!




Scaling theory of Localization
Abrahams, Anderson, Licciardello and Ramakrishnan 1979

g=E,/6, "Mt — g§=Ghe
L=2L=4L=8L...

without quantum corrections

E,ocL? 6, xL”




Is universal, i.e.,
material independent

But
/3 — function It depends on the global

symmetries, e.g., it is
different with and

without I -invariance

Limits:
g>1 ¢ o« [7? ﬂ(g):(d—2)+0(é)

g<<l gxe™ p(g)=logg <0




dlo
p - function dloﬁi = Blg)

unstable
fixed point

Metal - insulator transition in 3D
All states are localized for d=1,2



dl

unstable
fixed point

(k) = L,/



Quantum corrections at large Thouless
conductance - weak localization

Universal description



Localization Length



L ocalization in 1 dimension:

Transfer matrix formalism

All eigenstates in a one-dimensional disordered lattice are localized! |




|l ocalization in 1 dimension

Schrédinger equation for 1 dimensional tight-binding model:

("' v +v<x>]w<x>= w®  Vou+v., =(E-V. )y,

2m
2ma°
v, =208 o)
h-
2ma*
E=2-
Z@D={wn} no
\ljn—l

T n=

[E—l ; _01} Z(n) =Tp T -1y Z(1)



Fiirstenberg’s theorem for products of random matrices:

1 .
im — log||Th---T1a0||=7~>0
n—oo N
Consider finite system with N lattice sites:
localization length (exponential decay length) of solution with energy E:

ME.N) ‘= —— log |ao(E. N)an(E. N)|

\

for N — oc: A can be related with « (no riorous proof!):

0<y=A<0o0 Borland conjecture

All eigenstates in a one-dimensional disordered lattice are localized! '

Reza Sepehrinia, et al. PRB78, 024207
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Green’s functions:

Disordered systems of arbitrary
dimension



Green's functions

Hamiltonian H with discrete eigenvalues {E;, E>, ...} and eigenbasis

{|¢n>}n€N
Green's Operator:

1 On ®n
G(z) = — :Z lz 2<E,,| forz e C\{E1, E, ...}

Green's function:

G(r,r';z):= (r|G(2)|r")

Green’s function

contains information about system and its Hamiltonian:
@ eigenvalues E, are poles of Green's function

@ eigenfunctions can be deduced from the residues at the corresponding
poles




Green's functions and disordered solids

From Green's function for a disordered system we can calculate:

@ Density of states D(E)
(for Hamiltonian with continuous spectrum spec(H) C C):

D(E) = —i, Tr[GT(E) — G~ (E)]

27 1

GE(E):= lim G(E +in)
n—0+

@ Localization length A:

< log|G(r,r";E)| >

|r—r'|—o0 |I’ — r’|

lim

@ DC electrical conductivity o




Calculating Green's Functions

@ Consider disorder as perturbation:
H=Hy+ H;
Go(2z) = (z — Ho)™
G(z2)=(z—H) ' =(z—Hy—H1))™' =1 = Gy(2)H) ! Go(2)
= Gg+ Go Hy Gg + Gog Hy Gog Hy Gg + - - -

= Gg + Go H1 G
= Go + G Hy Gy

e Different methods to evaluate the ensemble average of the
perturbation series: < G(z) >



Anderson Model: Theoretical Results

Dimensionality of the system d < 2

All eigenstates are localized, no matter how weak the disorder!

@ Interior of the band corresponds to extended states

@ Critical energies E. separating localized from extended states:
Mobility edges

Dimensionality of the system d = 3

@ DOS forms tails of the band consisting of localized states

A7)

Extendzad states
g = /
Mobllltyfdbe e Ve =

NG

) \h';)calized states
s /'f'/
e (L2200
A =

Note: No rigorous proof of these results! )




e Perfect crystal: Delocalized electronic eigenstates
@ 1-D and 2-D disordered systems: All eigenstates are localized!

e 3-D disordered systems:
Energy band forms tails of localized states: Mobility edges

e Anderson transition:
Metal-Insulator phase transition at critical disorder

e Hopping transport by localized electrons:
S | .
Mott's T~ ¢ -law for conductivity

o(T) x e~ (To/T)V*

@ Weak localization:
Reduced conductivity in metallic regime due to disorder enhanced
backscattering



Spectral Statistics

and localization




Eigenfunctions | 1

w

localized

Q. Does anything interesting
" happen with the spectrum =



Density of States Density of States

energy ‘ |W 0 !energy

Density of States
I=0:W=0

extended

Mobility edge Mobility edge

~ exp ( — const. (E — Ey)~%?)



Density of States
I=z0:W=0

extended

Mobility edge | Mobility edge

Density of States is not singular
at the Anderson transition



RANDOM MATRIX THEORY

ensemble of Hermitian matrices
N xN with random matrix element N — o0
E, - spectrum (set of eigenvalues)

o

0, = <E a—FE > - mean level spacing

< ...... > - ensemble averaging
§= ol E, - spacing between nearest
- S neighbors
1
P(S) - distribution function of nearest

neighbors spacing between




RANDOM MATRIX THEORY

ensemble of Hermitian matrices

N xN with random matrix element N — o
E - spectrum
0, = <Ea+l - Ea> - mean level spacing

<> - ensemble averaging

E,.—-E, -spacingbetween
5, nearest neighbors

P(s) - distribution function of these spacings

Spectral Rigidity P(s=0)=0

Level repulsion P(s<<1)xs” p=1,2,4




Orthogonal
p=1

Simplectic
=4

o [V - 11 w
; T

Poisson - random energies



RANDOM MATRICES

N xX N matrices with random matrix elements. N — 0

Dyson Ensembles

Matrix elements Ensemble B realization

real orthogonal 1  T-inv potential

2 x2 matrices simplectic 4  T-inv, but with spin-
orbital coupling

localization of elastic

waves, PRB 78, 024207



Reasonfor P(s)—0 when s—0:

1. The assumption is that the matrix elements are statistically
independent. Therefore probability of two levels to be
degenerate vanishes.

2. If H,, is real (orthogonal ensemble), then for § to be small
two statistically independent variables ((sz- H 11) and H 12)
should be small and thus P(s) e« s p=1

Complex H |, (unitary ensemble) => both Re(H,) and

Im(H,,) are statistically independent gfhreezmdependen'r
random variables should be small => P




Anderson * Lattice - tight binding model

* Onsite energies &€, - random

» Hopping matrix elements 1 if

-W<e<W

uniformly distributed

Q o What are the spectral statistics of a ‘?

o finite size Anderson model, d>1 o



Anderson idransition

Strong disorder Weak disorder
I1<I I>1
c c
Insulator Metal
All eigenstates are localized Extended states
The eigenstates, which are Any two extended
localized at different places eigenstates repel each other

will not repel each other

l J

Poisson spectral statistics Wigner — Dyson spectral statistics



Zharekeschev & Kramer.
Exact diagonalization of the Anderson model

3D cube of volume 20x20x20

Energy/Spacing




Thouless Conductance and

One-particle Spectral Statistics

0 1 5
*
Localized states Extended states
Insulator Metal »ﬁ
Poisson spectral Wigner-Dyson
statistics spectral statistics

Transition at g~1. Is it sharp?
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The bigger the system the sharper the transition



Anderson transition in terms of pure level statistics

metal, W=>
critical, 16.5
insulator, 100

Wigner

_?_..""—"

. > ',4'-,,4....‘;.
Poisson’

Var S

0.7 F
6 —»
8§ ——
0.6 F 12 e—

0.5 F

04 F

0.3 p

0.2

Scaling of level spacing variance

Linear size of 3D cube

12 14 16 18 20

disorder W
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Distribution of the local density of states

as a criterion for Anderson localization:

Schubert, et al. PRB81, 155106 (2010)



Distribution of the local density of states

as a criterion for Anderson localization:

Numerical approaches to Anderson localization
face the problem of having to treat large
localization lengths while being restricted to finite

system sizes.

It is shown that the system-size dependence of
the LDOS distribution is sign of Anderson
localization, irrespective of the dimension and
lattice structure.

The numerically obtained exact LDOS data is
agree with a log-normal distribution over up to ten
orders of magnitude



pdE) = 2 Kiln)|*8(E - E,),

/ |\ /Jackson kernel
I(E-Et)

H=- 12 (Cj-(‘j + H.C.) + 2 eicj-ci’
(ii) i
L [y
ple]=—6( = —lel |-
v \2
exact 20/ 1 N
spectrum

- P
E
p=2(F, Ep.1)
; Ix )1, Ix i, T
. 2
p-C(FEq) = [Ciln)| : *
* ¢
X— X— -« X—
" weiht;add J
=
P (FE )= X i(En-E0)[iln)[? ¥ &
n

Exact diagonalization ED

Kernel Polynomial Method KPM



©
|

1
pilE) = 5 3 (IR 8(E - E),

k=0

v

k=0

D-1
( Tn(M)|k>(k|Z) = (zITn(M)IZ)

f BB T (B)dE = = 3 |GIBT, (B
1
D k=0

T(z) = cos(n arccos(z)),



6 4 -2 0
In(p,(E<0))




Classical Wave Localization




Electrons interact

With each other




Randomly scattered water waves

@ regularly distributed scatterers: waves are spreading all over the surface

@ randomly distributed scatterers: waves remain localized in some areas



Spin Diffusion

Feher, G., Phys. Rev. 114, 1219 (1959); Feher, G. & Gere, E. A., Phys. Rev. 114, 1245
(1959).

Microwave
Dalichaouch, R., Armstrong, J.P., Schultz, S. Platzman, P.M. & McCall, S.L. “Microwave
localization by 2-dimensional random scattering”. Nafure 354, $3-55, (1991).

Chabanov, A.A., Stoytchev, M. & Genack, A.Z. Statistical signatures of photon
localization. Nature 404, 850-853 (2000).

Pradhan, P, Sridar, S, “Correlations due to localization in quantum
eigenfunctions od disordered microwave cavities”, PRL 85, _

f=3.04 GHz

fa) (b)

Localized Extended




Localization of Ultrasound

Weaver, R.L. “Anderson localization of ultrasound”.
Wave Motion 12, 129-142 (1990).

H. Hu, A. Strybulevych, J. H. Page, S. E. Skipetrov & B. A. van
Tiggelen “Localization of ultrasound in a three-dimensional elastic
network” Nature Phys. 4, 945 (2008).




Localization of Light

D. Wiersma, Bartolini, P., Lagendijk, A. & Righini R. “Localization of light in a disordered medium”,
Nature 390, 671-673 (1997).

Scheffold, F., Lenke, R., Tweer, R. & Maret, G. “Localization or classical diffusion of light”,

Nature 398,206-270 (1999).

Schwartz, T., Bartal, G., Fishman, S. & Segev, M. “Transport and Anderson localization in disordered two
dimensional photonic lattices”. Nature 446, 52-55 (2007).

L.Sapienza, H.Thyrrestrup, S.Stobbe, P. D.Garcia, S.Smolka, P.Lodahl “Cavity Quantum Electrodynamics
with Anderson localized Modes” Science 327, 1352-1355, (2010) '
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Note: all of the previous examples are classical waves

Localization of cold atoms

Billy et al. “Direct observation of Anderson localization
of matter waves in a controlled disorder”. Nature 453, 891- 894 (2008).

Roati et al. “Anderson localization of a non-interacting Bose-Einstein
condensate“. Nature 453, 895-898 (2008).



Random mass

E < 6 —w?, ¢;(E) < w’mj = (6 — E)m, .

(b)

PRB78, 134206 (2008)




Random spring constants

atzw(x t) - [ (x)—tﬁ(x t)]

Niv12(Wi1 = ) = N1 (Wi = Yy) + wzlﬁ

(w,-ﬂ):Mil__l( v, )
U T\

- o'+ Bi-1 + B 3 Bi-1
Mi,i—l = .Bi ,Bi
1 0

)\i+1/2= :Bi’

)\i—1/2=ﬁi—1a

PRL 94, 165505 (2005)



Elastic wave localization

Martin-Siggia-Rose action

88



k endi
PRL 94, 165505 (2005) PHYSICAL REVIEW LETTERS 29 APRIL. 2005

Localization of Elastic Waves in Heterogeneous Media with Off-Diagonal Disorder
and Long-Range Correlations

F. Shahbazi,' Alireza Bahraminasab,” S. Mehdi Vaez Allaei,” Muhammad Sahimi,** and M. Reza Rahimi Tabar’>”

'Department of Physics, Isfahan University of Technology, Isfahan 84156, Iran
2Department of Physics, Sharif University of Technology, Tehran 11365-9161, Iran
3Institute for Advanced Studies in Basic Sciences, Gava Zang, Zanjan 45195-159, Iran
*Department of Chemical Engineering, University of Southern California, Los Angeles, California 90089-1211, USA
SCNRS UMR 6529, Observatoire de la Cote d’Azur, BP 4229, 06304 Nice Cedex 4, France
(Received 17 September 2004; published 28 April 2005)

Using the Martin-Siggia-Rose method, we study propagation of acoustic waves in strongly heteroge-
neous media which are characterized by a broad distribution of the elastic constants. Gaussian-white
distributed elastic constants, as well as those with long-range correlations with nondecaying power-law
correlation functions, are considered. The study is motivated in part by a recent discovery that the elastic
moduli of rock at large length scales may be characterized by long-range power-law correlation functions.
Depending on the disorder, the renormalization group (RG) flows exhibit a transition to localized regime
in any dimension. We have numerically checked the RG results using the transfer-matrix method and
direct numerical simulations for one- and two-dimensional systems, respectively.



The scalar wave equation:
2 x,t) = V- A VU(x,8)] = 0, ®)

where 10(x,t) is the wave amplitude, and A\(x) = e(x)/m the ratio
of the elastic stiffness e(x) and the medium’s mean density m. We

then write A as,
/\(X) = Ao+ U(X) ) (3)

where \p = (A(x)). In the present paper n(x) is assumed to be a

Gaussian random process with a zero mean and the covariance,

(n(x)n(x")) = 2C(|x — X|) = 2Dpd"(x — x) +2D,|x — x'[*~*.

The Model (Scalar Field)
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Propagation of Wave Component with Frequency w

w) +
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The Martin-Siggia-Rose Action

Se [1‘;'17 VR, 1:.7 X5 X*] —

/ dxdx’ | (it p(x')(V

5] ')

W

+ /\0) 1(x) + iUR(X) (V2 + - )R(x)

')

Ao

K — ™
-+ (ZVL VU + sz,RVz,R + VxVy) (x/\z x') (sz;.'JVz;I

Two coupling constants: 2

+iVURVUR + VXVX)]

+ X (X)(V2 + —)x(x))d(x — X))

g0=Dy/A%,  g,= Dp/A}?

RG analysis to one-loop order in the limit, ®*/A,— 0, to determine the two
beta functions. 92



Diagrammatic Representation and One-Loop Corrections

—4go(ka k) (ks k)5 (T, K =><
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FIG. 2. Diagramatic representations of the propagators and vortices in the effective action S..

o
N

+2:D<+2 +

~

FIG. 3. One-loop corrections to the four-point correlation function.
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The Beta Functions

The functions 3(go) and 3(g,) are then given by,

-/ ey
B(d0) = 577 = —ddo + 835 + 1057 + 20303, ,
IO/ e

where [ > 1 is the re-scaling parameter, and

s [ d+5
go = R4 2d(d+2) do ,

o [ d+s
I = 150d+ 2y | 977



Phase Space and Fixed Points

Three sets of fixed points for 0 <p < d/2:
Trivial FP (Gaussian) at g,* = g * = 0 (stable)
Non-trivial FPs, one at g,* = d/8, gp* = 0, and the other at

4 5
— —— |d+ —(2 —d]
90 41[ +16(P )
5 2 205
——/ld+ =(20—-d 2p — d)?2
11 ["Lm“o )] + 2560 2P Y%
3 1
*— —gi 4+ —(d -2
.qp 4g0+16(d "p))

Stable in one eigendirection, but unstable in the other
eigendirection. 95



Phase Space (Continued)

Thus, a system with uncorrelated disorder 1s unstable
against disorder with long-range correlations towards
a new FP.

Thus, with increasing disorder, extended — localized

96



Phase Space (Continued)

i

—

Sp

FIG. 5. Flows in the coupling constants space for 0 < p < %d.
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Phase Space (Continued)

Two sets of fixed points for p > d/2:

Gaussian FP, stable on the g, axis, but not on the g axis

Non-trivial FP at g)* = d/8, g * = 0, unstable 1n all
directions.

Thus, power-law disorder relevant, but no new FP.

Long-wavelength behavior determined by long-range
correlations.
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Phase Space (Continued)

e

Ep

FIG. 6. Flows in the coupling constants space for p > %d
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Frequency-Dependence of Localization Length

N . 6
gL | N =6x10
', —s— =23
. ——— =234
\ —— =245
|
L o8
ol -
li
< Y
I |
SR
X 4 '.L

Localization length £ as a function of the frequency w for ¢ < ¢, = 2.4 and ¢ > o,.

The system size is N = 6 x 10°. The results represent averages over 6000 realizations.



X
FIG. 7. The wave front in a 2D anisotropic system at (dimensionless) times, t; = 328, t; = 384,

and t3 = 440, with p = 1.5.



Roughness of Wave Front: Self-Affine Fronts

Computing the correlation function
C(r)=<[d(x) - d(x +1)]*>
d(x) = distance from the source along the propagation direction
C(r) ~ r’@

a=H=p-1

S. M. Vaez Allaei and M. Sahimi, PRL 96, 075507 (2006).
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The Shape of Wave Front and its Evolution

U

H=0.75



Multifractality



3D Anderson transition

Anderson transition

disorder

Extended "
ERGOXD;E :‘ra'res Critical states Localized

tat
Multifractal Critical Trares

states -only at the
transition point




Localized state wavefunctions have a complex spatial structure
and exhibit multifractility

Py = f gd"'w)(r) |2q Inverse participation ratio

/

LY Insulator
(Pg) ~{ L™ Ta Critcal 7Tq= d(g—1) + Ag = Dg(qg—1)
—d(q—1) normal anomalous
\ L Metal




Multifractality of the wave functions y_ (7)

Moments of the

inverse participation
ratio:

Ergodicity: -
Exponentially localized states: m

Multifractality h_ Fractal dimensions

differ from O and 1
and depend on g

O(N‘ )




Statistics of the

Spectrum of ,
onsite values of

fractal
dimensions

— At rand
Distribution _ ny, ( )‘ random
function P (a) % = InN variable

the eigenfunctions

Multifractal




Intrinsic localized phonon

modes
at a nonlinear lattice




v Energy localized vibration in nonlinear lattices 1s
known as intrinsic localized mode.

v" The intrinsic localized mode can move without
decaying 1ts energy concentration.
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Intrinsic Localized Modes in Anharmonic Crystals
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A new kind of localized mode is proposed to occur in a pure anharmonic lattice. Its localization prop-
erties are similar to those of a localized mode for a force-constant defect in a harmonic lattice. These
modes, which are thermally generated like vacancies but with much smaller activation energies, may ap-
pear at cryogenic temperatures in strongly anharmonic solids such as quantum crystals as well as in con-
ventional solids.

PACS numbers: 63.20.Ry, 63.20.Mt, 63.20.Pw, 67.80.Mg

Localizing Energy Through
Nonlinearity and Discreteness

Intrinsic localized modes have been theoretical constructs
for more than a decade. Only recently have they been
observed in physical systems as distinct as charge-transfer
solids, Josephson junctions, photonic structures, and
micromechanical oscillator arrays.

David K. Campbell, Sergej Flach, and Yuri S. Kivshar



Two non-linear oscillators

wz/wl #p/q

with p and g
| being two co-prime
- O positive integers.

Different amplitudes results in different frequencies

For strictly incommensurate frequencies, no possible
resonances exist between any of the oscillators’ harmonics.

The Kolmogorov-Arnold-Moser (KAM) theorem of
nonlinear dynamical systems, which establishes that the
incommensurate motions do remain rigorously stable for
sufficiently weak coupling and ensures that the excitation
energy remains localized on the first oscillator.



% 1

d¢> ( Ax)2

(brs1 + by =20, )=, + ) =0.

Here ¢ (t) represents the displacement of a nonlinear “quar-
tic” oscillator at lattice site n, so that the equation represents
an infinite one-dimensional array of anharmonic oscillators
counled to their nearest neighbors with a coupling

strength given by 1/(Ax)>.

degenerate minima at ¢ = +1

dlnw 34 =2+ (2/Ax)* sin*(q/2)
2<w?<2+ 2/Axy

Oln Az  w




Here ¢, (¢) represents the displacement of a nonlinear “quar-
tic” oscillator at lattice site n, so that the equation represents
an infinite one-dimensional array of anharmonic oscillators
counled to their nearest neighbors with a coupling

strength given by 1/(Ax)>.
degenerate minima at ¢ = +1

SONGESE () 2 = 2 + (2/Ax)? SiHZ(q/ 2)
relation K

2 < wq2 < 2 + (2/Ax)?




A(...0,-1/2,1,-1/20,...)

—

0, = V2+(2/AXsin*(q/2)




Intrinsic localized modes (ILMs), also known as
discrete breathers (DBs), are, in fact, typical excitations in
perfectly periodic but strongly nonlinear systems.

Hence, there will be no possibility of a linear coupling to the
extended modes, even in the limit of an infinite system when
the spectrum @ q becomes dense. This means that the ILM
cannot decay by emitting linear waves (that 1s, phonons) and
1s hence linearly stable. (1D,2D and 3D)

Discrete intrinsic localized modes 1n a microelectromechanical resonator
https://arxiv.org/abs/1610.01370

Using the combination of Laser Doppler Vibrometry (LDV) and
piezoelectric driving, they observe the two-dimensional transport of
ILMs on mechanical structure.




Theoretical studies by Ding Chen (Saclay) and his collaborators
gave an explicit algorithm for moving ILMs along the lattice, and

calculations of Michel Peyrard (ENS, Lyon) established that [LMs can
be generated from thermal fluctuations.

This intuitive understandingof the origin of ILMs/DBs 1n discrete
nonlinear systems was presented 1n the pioneering paper of Albert
Sievers and Shozo Takeno in 1988.

Robert MacKay and Serge Aubry, for example, rigorously proved
the existence of DBs in networks of weakly coupled anharmonic
oscillators.



The Chen and Peyrard results suggest that ILMs may play
critical roles 1n the transport of energy and other dynamical

properties of nonlinear discrete systems, such as melting
transitions 1n solids and folding in polypeptide chains.

The conformational changes and buckling of long biopolymer
molecules may occur in response to the excitation of nonlinear

localized modes.



Figure 4. A two-dimensional intrinsic localized mode forms in a photonic lattice that was created by optical induction in a pho-
torefractive crystal. A second laser beam provides the input, which is centered on a single site in the photonic lattice. The 3D per-
spectives show (a) the input intensity; (b) the linear diffraction output that occurs in the absence of a photonic lattice; (c) the dis-
crete linear diffraction, induced by the photonic lattice for weak nonlinearity; and (d) an ILM that occurs at larger nonlinearity.
(Figure adapted from H. Martin et al., ref. 12.)

Figure 5. A biopolymer chain buckles :
and folds in on itself due to an insta- =200 _»

bility produced by a moving nonlinear 4 o '
localized mode. That mode started as

a single-particle excitation at the left .,
end of the 30-particle chain and propa- ’ z
gated to the middle. Marked particles t =160 L
indicate the location of the moving

o

ILM excitation as a function of i
the time t (in dimensionless § = 150;0 °
units). (Figure adapted from B o
S. Mingaleev et al., 2 nqg

ref. 15.) t =140
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Phonon life time (EXP.)

The time-resolved sum frequency generation (TR-SFG)

IR pump
VIS probe SYC A
IR probe SPa
VIS probe

Q oooo;.!.;:\oogg‘? lRprobe l
« i . 68 & & 1 v=
& H o) 8P b IR pump AT

M. Smits 2007 New J. Phys. 9 390
http://web.vu.lt/tff/m.vengris/images/TR spectroscopy02.pdf






338335332 233338058  Condition for
090000000 @ 06 @ Localization:
$9s220083 0estesEs .
SIissidis gipiesgl: ImgmATe
000000@00 @o ooo%o # of n.neighbors
IFEIXNEEXK @o ® ®
FYXXXNENK 00 9@ Do 00

Anderson insulator Anderson metal energy _ | —¢.

Few isolated resonances There are many resonances mismatch |77 J

and they overlap

_ Typically each site is in the # of nearest

resonance with some other one neiaghbors

A bit more precise:

Logarithm is due to the resonances, which are not nearest neighbors



Condition for Localization:

> (1) ()

Q'Is it correct ?
For low dimensions - NO. ] = ford = 1.2
Al:

« All states are localized. Reason - loop trajectories

Az * Works better for larger dimensions d > 2

A3 s Is exact on the Cayley tree (Bethe lattice)

I = v ;
KInK

K is the branching number



