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La,ce thermal transport
Outline 

• Semiclassical Boltzmann 
transport equa>on; 

• What is the relaxa>on 
>me approxima>on and 
when does it fail; 

• Formal defini>on of 
collec>ve excita>ons: 
relaxons 

• Surface scaHering 

• Second sound time
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La,ce thermal transport

Linearised Boltzmann transport equa>on

Phonon popula>on at equilibrium: 

If the system is out-of-equilibrium, popula>ons change:

Thermal  
conduc>vity:

Within harmonic approxima>on (Hardy)

Index on  
all states
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Boltzmann from first principles
3-phonon interac>ons  
Vanderbilt, Louie, Cohen PRB 33, 8740 (1986)  
Vanderbilt, Taole, Narasimhan PRB 40, 5657 (1989)

Mass disorder (isotopes)  
Garg, Bonini, Kozinsky, Marzari PRL 106, 045901 (2011)

Decay Coalescence



Phonons proper>es with density func>onal perturba>on theory 

dynamical matrix  
(provides phonon frequencies and eigenvectors) 
Baroni, de Gironcoli, Dal Corso, Giannozzi  
Rev. Mod. Phys. 75, 515 (2001) 

3rd-order anharmonic force constants 
(provides 3-phonon coupling strengths)  
Debernardi, Baroni, Molinari PRL 75, 1819 (1995)  
PaulaPo, Mauri, Lazzeri PRB 87, 214303 (2013) 

Available in Quantum-ESPRESSO 
www.quantum-espresso.org

Boltzmann from first principles

http://www.quantum-espresso.org
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Relaxa>on >me approxima>on
O_en, the Boltzmann equa>on is simplified using the Single-Mode 
relaxa>on >me Approxima>on (SMA): 

Time between 
phonon collisions

⟹ heat flux dissipated at every scaHering event

With this approxima>on, thermal conduc>vity is simply given by a 
kine>c theory of the phonon ‘gas’:



Phonon scaHerings don’t 
always dissipate heat flux, 
as the SMA incorrectly 
assumes.

qx

qy

q1

q2

q3

qx

qy

q1

q2

q3 G

Normal process Umklapp process

What’s wrong with the SMA?

Normal Umklapp

“Momentum” 
conservation ✔ ✘

Heat flux  
conservation ✔ ✘
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Macroscopically, the thermal conductivity of a material is
defined by the Fourier’s law as the ratio between the heat flux Q
and the applied gradient of temperature ▽T, such that Q =
−k▽T. A rigorous microscopic description of k requires a
solution of the Boltzmann transport equation (BTE),13 giving
for every phonon ν the deviation of the phonon population Fν
with respect to the equilibrium distribution nν̅ (the Bose−
Einstein), such that the total out-of-equilibrium distribution is
nν = nν̅ + n ̅ν(n ̅ν + 1)Fν▽T (we assume here the linearized
form). The thermal conductivity can then be expressed in terms
of Fν, the phonon energies ℏων and the projection along ▽T
of the phonon group velocities cν

∑ ω= ℏ
Ω ̅ ̅ +

ν
ν ν ν ν νk
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n n c F( 1)
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where Ω is the volume, kB is the Boltzmann constant, and T is
the temperature.
In the great majority of cases, due to the difficulties

associated with an exact solution of the BTE an approximation
is used where the individual phonons are considered to be the
main heat carriers. This is the single mode relaxation time
approximation (SMA) of the BTE,14−16 obtained by approx-
imating Fν with cνωντν, where τν is the lifetime or relaxation
time of the phonon mode ν. The SMA thus estimates Fν as a
quantity that depends only on the properties of each individual
phonon mode ν; the exact Fν is instead qualitatively different
because it takes into account also the presence of collective
excitations.17 Only the exact solution of the BTE, obtained by
inverting the full scattering matrix, is able to characterize the
collective nature of the excitations that are present in the
nonequilibrium states such as the one induced by a gradient of
temperature. These effects are the outcome of the complex
interplay of different scattering events in the whole Brillouin
zone that affect both the depopulation of initial states and the
repopulation of final states. Instead, the SMA is able to describe
correctly the depopulation of a phonon mode after a scattering
process but repopulates all final states isothermally, losing
memory of the initial phonon distribution.
On the other hand, thanks to recent progress18−20 we can

now solve the BTE exactly21 following the method explained in
ref 18 where harmonic and anharmonic properties of phonons
are calculated fully from first-principles22 within density
functional perturbation theory.23−26 Specifically, we used a
recent generalization for metallic systems and arbitrary
wavevectors, implemented starting from the Quantum-
ESPRESSO distribution10,27

The anharmonic first-principles results are necessary to
compute without parameters the scattering rates due to three-
phonon interactions. These processes are dominant at high
temperatures and describe the 1/T part of the thermal
conductivity. In addition, we also consider scattering due to
the presence of isotopic disorder,28 treated within perturbation
theory at the harmonic level and in its symmetric form as in ref
18, which has the effect of a global downscaling of thermal
conductivity and extrinsic sources of scattering, such as
interface scattering, mostly relevant to describe the T3 behavior
at very low temperatures.
We first consider the results of graphite (Figure 1) that we

can even compare with high-precision measurements on perfect
crystals of large sizes.12 The comparison shows a remarkable
agreement between measurements and the results of our
simulations (also tested on crystalline diamond in ref 18). Most

importantly, if the SMA is used we find a severe under-
estimation by an order of magnitude for the in-plane
conductivity, while keeping a good agreement with experiments
for the out-of-plane conductivity. A full agreement with
experiments is achieved only when the exact solution of the
BTE (exact in Figure 1) is considered. The inadequacy of the
SMA was found also in a recent first-principles work on
graphene29 and in single and multilayer graphene described
with an empirical potential.11,30−32 These results highlight how
the description of these systems in terms of single-phonon
properties is not sufficient and it is necessary to describe the
collective excitations that arise in the exact BTE. The phonon
representation used in the SMA is related to the eigenvalues of
the dynamical matrix, while a suitable representation of the heat
carriers is instead given by the eigenvalues of the scattering
matrix17 (matrix A in ref 18), which we here refer to as the
collective excitations. A much higher thermal conductivity with
respect to the graphite case is found for single-layer graphene
(top panel of Figure 1), as the experimental evidence suggests,
and the bilayer is intermediate between the two extreme cases.
We stress that this difference in thermal conductivity upon

Figure 1. (Top panel) In-plane lattice thermal conductivity in bulk
graphite, single- and bilayer graphene of crystalline-domain sizes (see
text) L = 1 mm and (bottom panel) out-of-plane thermal conductivity
of graphite with L = 0.3 μm. The data (EXP) of graphite are taken
from ref 12, which were obtained by a compilation and analysis of
several research papers with a widely accepted extrapolation above 300
K, a posteriori shown to be accurate by the present calculations. This
extrapolation regime is highlighted by the use of filled diamonds. Solid
lines are used for the exact solutions while dashed lines for the single-
mode approximation (SMA) solutions. (Inset) Zoomed SMA results
for the range T = 200−600 K, in which in-plane thermal conductivity
is qualitatively wrong; graphite conductivity is found to be higher than
single- and bilayer graphene.

Nano Letters Letter

dx.doi.org/10.1021/nl502059f | Nano Lett. 2014, 14, 6109−61146110

Graphite and graphene

Thermal transport 
cannot be studied 
with the SMA. 

[Nano LeP. 6109,  
 14, (2014)]
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Figure 1. (Top panel) In-plane lattice thermal conductivity in bulk
graphite, single- and bilayer graphene of crystalline-domain sizes (see
text) L = 1 mm and (bottom panel) out-of-plane thermal conductivity
of graphite with L = 0.3 μm. The data (EXP) of graphite are taken
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Wrong 
trends in SMA
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Exact vs SMA conduc>vity 

The exact solu>on of 
the Boltzmann 
transport equa>on is 
necessary in 2D 
materials.  
[Nat. Commun. 6, 7400 
(2015)] 

Failure first found in 
graphene: [Lindsay et 
al. PRB 82, 115427 
(2010)]
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2D heat transport regimes
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Defining heat carriers
Heat flux is not dissipated at every phonon scaHering event.  
Therefore phonons are not the heat carriers; 

How can we define heat carriers? 

time

relaxon

phonon

Our sugges>on: we diagonalise the sca-ering operator:  

α labels all possible eigenvalues. 

By defini>on, eigenvectors don’t  
scaHer among themselves. 



Each eigenvector, termed relaxon, is 
a collec<ve excita<on of phonons. 

 
Eigenvector  =

Eigenvalue index

Phonon index

Picture: eigenvector with smallest 
eigenvalue in graphene at 300K 
(ab-ini>o calcula>ons) 

Red areas indicate overpopula>on of 
phonons w.r.t. thermal equilibrium, 
blue indicates deple>on

distribu>on of  
phonon popula>ons



From phonons to relaxons
Re-express phonon popula>ons in terms of relaxon popula>ons 



From phonons to relaxons
Re-express phonon popula>ons in terms of relaxon popula>ons 

Instead of phonons, we study relaxon popula>ons fα. 

Change basis of the Boltzmann transport equa>on
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Consider a system at thermal equilibrium where only one mode is 
excited uniformly in space (T=const and ∇f=0): 

Popula>ng a state α at >me t0, it relaxes as an exponen>al:

Relaxons have a  
relaxa>on >me!

Rota>ng back to phonons: 

The phonon decay depends on the ini>al condi>ons:  
⇒ ill-defined phonon relaxa>on >mes 

Only relaxons have well-defined relaxa>on >mes!

Exact relaxa>on >mes

[PNAS, 113, 43 (2016)]
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Bulk thermal conduc>vity
The thermal conduc>vity in the basis of relaxons is: 

Relaxon specific heat

Relaxon velocity

Relaxon mean free path

C, same ∀ relaxon

We recover a kine>c-gas like descrip>on of thermal transport, with 
new es>mates of >me, length and velocity scales of transport. 

⟹ we iden>fy relaxons with the heat carriers



Graphene @ 300K
Phonon life>mes  

vs  
Relaxon relaxa>on >mes. 

Phonon scaHering >me scale  
≈ 10-100ps  

Heat flux >me scale 
 >> 1000ps 
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Life>mes @ 300K

Two examples: graphene (where the SMA underes>mates fails) and 
silicon (where the SMA gives good conduc>vity) 

The theory changes the relevant >me scale in graphene by orders of 
magnitude; and few modes (~20) contribute for most of transport

100 101 102 103 104 105 106

Relaxation time (ps)

10-6

10-5

10-4

10-3

10-2

10-1

100

101

Co
nt

rib
ut

io
n 

to
k

(%
)

relaxons
Graphene

phonons

100 101 102 103 104 105

Relaxation time (ps)

10-6

10-5

10-4

10-3

10-2

10-1

100

101

Co
nt

rib
ut

io
n 

to
k

(%
)

relaxons
Silicon

phonons



Veloci>es

The velocity of heat transport is not the speed of sound (20km/s in 
graphene, 18km/s in silicon), but much smaller (0.1 - 1 km/s)
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Mean free paths

The distances at which heat is dissipated by each mode is very 
different from the phonon mean free paths.
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Surface scaHering

Typical interpreta>on: a phonon only travels for (1) the distance 
between scaHering events or (2) the sample length L.  
Therefore, the effec>ve phonon relaxa>on >me is:

?

Can we say the same for relaxons?

?

⟺

Let’s see…

[Nano LePers ASAP, (2017)]



In silicon, the tradi>onal approach works for phonons, but 
results for relaxons are off by two orders of magnitude. 

 

Exp: Nano LeP. 107, 11 (2011)

Silicon



In silicon, the tradi>onal approach works for phonons, but 
results for relaxons are off by two orders of magnitude. 

Ques>on: why do we use this rela>on in first place?  
[Phys. Rev. 33, 92 (1961)]

Exp: Nano LeP. 107, 11 (2011)
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SMA

A finite sizes system doesn’t have transla>onal invariance: 
Δnμ(r) depends on space. In the chosen geometry, we have:

W
Heat  

source
Heat  
sink

SMA surface scaHering
We study a 2D ribbon, of finite 
width but infinite length

x

y



SMA surface scaHering
We must solve the following BTE:



SMA surface scaHering
We must solve the following BTE:

This is a linear differen>al equa>on that we can solve exactly.



SMA surface scaHering
We must solve the following BTE:

This is a linear differen>al equa>on that we can solve exactly.

Case 1: vyμ = 0: the phonon travels parallel to the surface; 
it’s popula>on is the same as in the bulk case;



SMA surface scaHering
We must solve the following BTE:

This is a linear differen>al equa>on that we can solve exactly.

Case 1: vyμ = 0: the phonon travels parallel to the surface; 
it’s popula>on is the same as in the bulk case;

Case 2: vyμ > 0 is more involved (the case vxμ < 0 is similar).



SMA surface scaHering

We must use a boundary condi>on. Ziman proposed to relate it 
with the surface phonon reflec>vity:  

The number of phonons traveling away from the surface must be 
equal to the reflected number of phonons that were traveling 
against it:

x

y

-W/2

μμ’



Suppose perfect absorbance (R=0): 

Finally, the thermal conduc>vity is: 

Note: thermal conduc>vity is not a bulk property!

SMA surface scaHering



Final step: if we want to neglect the detailed space-dependence, 
we can average results in space: 

 
Take home message: surface effects must be studied in real space. 
Results can be wriHen in reciprocal space, but a_er averaging over 
space

SMA surface scaHering
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Surface scaHering
Let’s do the same with relaxons. We start from the BTE:

We make another auxiliary scaling (                     ) and get:

: bulk solu>on

: matrix with dimensionality of length

It’s a differen>al equa>on that can be solved analy>cally!
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Surface scaHering
The equa>on is trivial to solve in the basis of the eigenvectors of 
the matrix Λ:

Change the basis

Find a simpler differen>al equa>on

With solu>ons

Same as before, but in a different basis



Surface scaHering
Let’s think at the modes ψαi as par>cles moving towards y>0 (if 
λiy>0) or y<0 (if λiy<0). The boundary condi>on is fixed like before: 

If there’s no reflec>on at the surface (R=0), we find an analy>cal 
solu>on of the BTE: 



Surface scaHering
With a liHle more algebra, finally, the thermal conduc>vity is: 

• The conduc>vity is a bulk term minus a surface term; 

• Conduc>vity isn't a bulk property: depends on where it is 
measured, and, in general, on the shape of the material; 

• The length scale of surface scaPering is determined by the 
eigenvalues of Λαβ, not by the relaxon mean free paths.
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• The conduc>vity is a bulk term minus a surface term; 

• Conduc>vity isn't a bulk property: depends on where it is 
measured, and, in general, on the shape of the material; 

• The length scale of surface scaPering is determined by the 
eigenvalues of Λαβ, not by the relaxon mean free paths.



MoS2 monolayer
Ribbon geometry (finite width, infinite length)



MoS2 monolayer

Contribu>on to thermal 
conduc>vity from relaxon 
θμα and reduc>on of 
thermal condu>vity from 
mode ψαi 

Fric>on lengths are much 
longer than carrier mean 
free paths.
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MoS2 monolayer
Thermal conduc>vity has a 
minimum at the surfaces 
and maximum at the center. 

Temperature response  
(ΔT= ΔE/C) is constant  
along the ribbon width. 

The same behavior is seen 
in liquids (e.g. rivers): 
phonons display 
hydrodynamic behaviors 

Hence, iden>fy the 
eigenvalues  λi

y as  
“fric>on lengths”
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MoS2 monolayer
Surf-RTA is a model of 
surface scaHering o_en 
seen in literature 

This mixes SMA and non-
SMA results and it’s 
incorrect  
(1) theore>cally and  
(2) by an order of 
magnitude (the 
horizontal transla>on)
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MoS2 monolayer

Trends follow the 
expected behavior; 

The difference is bigger 
at low temperatures, 
where surface scaHering 
is more important; 

Note: the log-scale 
compresses differences!
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Second sound
The Boltzmann transport equa>on admits wave-like solu>ons: 

The Boltzmann equa>on is a non-hermi>an eigenvalue problem 
 

Waves have a dispersion rela>on, with complex frequencies:

[arXiv:1612.04317]



Second sound
Popula>on waves ⟺ Temperature waves 

 
 
Using this Ansatz, we obtain damped  
wave solu>ons of temperature,  
i.e. a basis set of second sound modes 
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In 2D materials, phonon scaHering is mostly of normal kind, thus:

• The relaxa>on >me approxima>on doesn’t hold;

• Transport is mostly hydrodynamic (Poiseuille and Ziman regimes)

• The low-temperature transport regimes of 3D materials are 
found in 2D at room temperature (see also S. Lee);

• Phonons aren’t ‘good’ heat carriers, because phonon scaHering 
isn’t directly related to heat flux dissipa>on;

• Relaxons, the eigenvectors of the scaHering matrix, are the true 
heat carriers;

• A kine>c theory of the relaxon gas describes exactly thermal 
transport in crystals, revising >me and length scales of transport.

• Surface “scaHering” is in fact an effect of the fric>on (viscosity) 
of the ‘liquid’ of vibra>ons.

Conclusions


