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Lattice thermal transport

Phonon population at equilibrium: n, = ! k=(qs)
B ehwu/ksT _ 1 Indexon
all states

If the system is out-of-equilibrium, populations change: n, = n, + An,

Linearised Boltzmann transport equation
on,

1
5t Fv,-Vn, = By XQWL/An“/
!

e\ N>

Thermal fo— Q _ Zu hwy vy Any
conductivity: VT \ VVT

Within harmonic approximation (Hardy)




Boltzmann from first principles

3-phonon interactions

Vanderbilt, Louie, Cohen PRB 33, 8740 (1986)
Vanderbilt, Taole, Narasimhan PRB 40, 5657 (1989)
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Boltzmann from first principles

3-phonon interactions

Vanderbilt, Louie, Cohen PRB 33, 8740 (1986)
Vanderbilt, Taole, Narasimhan PRB 40, 5657 (1989)
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Decay Coalescence

Mass disorder (isotopes)
Garg, Bonini, Kozinsky, Marzari PRL 106, 045901 (2011)
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Boltzmann from first principles

Phonons properties with density functional perturbation theory

dynamical matrix

2
0°E (provides phonon frequencies and eigenvectors)

ou10U> Baroni, de Gironcoli, Dal Corso, Giannozzi
Rev. Mod. Phys. 75, 515 (2001)

83E 3rd-order anharmonic force constants

(provides 3-phonon coupling strengths)

8U1 0 UZa Us Debernardi, Baroni, Molinari PRL 75, 1819 (1995)
Paulatto, Mauri, Lazzeri PRB 87, 214303 (2013)

Available in Quantum-ESPRESSO 1 O i e e
WWW.gquantum-espresso.org



http://www.quantum-espresso.org
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Relaxation time approximation

Often, the Boltzmann equation is simplified using the Single-Mode
relaxation time Approximation (SMA):

1 a A An,
V Z pu! S = 7SMA Time between
/ 7 —_— .
K phonon collisions

With this approximation, thermal conductivity is simply given by a
kinetic theory of the phonon ‘gas’:

1
k= % Cuvu N

SMA __ SMA
/\“ = Vu T,

SMA . -
k ~ T, = heat flux dissipated at every scattering event



What’s wrong with the SMA?

a4y

q.

q;:

qs

Normal process

“Momentum”
conservation

a4y

qs

Heat flux
conservation

Umklapp process

Phonon scatterings don’t
always dissipate heat flux,
as the SMA incorrectly
assumes.
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Graphene: Normal vs Umklapp
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Exact vs SMA conductivity
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Boron nitride
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The exact solution of
the Boltzmann
transport equation is
necessary in 2D
materials.

[Nat. Commun. 6, 7400
(2015)]

Failure first found in
graphene: [Lindsay et
al. PRB 82, 115427
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Heat transport regimes
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Heat transport regimes
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Hydrodynamic phonon transport is rarely present in 3D bulk systems.
In 2d materials, it’s present at room temperature.

Cepellotti A. et al., Nat. Commun. 6, 7400 (2015)
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How can we define heat carriers?



Defining heat carriers

Heat flux is not dissipated at every phonon scattering event.
Therefore phonons are not the heat carriers;

How can we define heat carriers?

Our suggestion: we diagonalise the scattering operator:
1
— Q L _ea
z pp u o w
a labels all possible eigenvalues. o.

By definition, eigenvectors don’t
scatter among themselves.

A\
relaxon y

> phonon O




Each eigenvector, termed relaxon, is
a collective excitation of phonons.

distribution of

Eigenvector = phonon populations

Eigenvalue index

/

Phonon index

Picture: eigenvector with smallest
eigenvalue in graphene at 300K
(ab-initio calculations)

Red areas indicate overpopulation of
phonons w.r.t. thermal equilibrium,
blue indicates depletion



From phonons to relaxons

Re-express phonon populations in terms of relaxon populations
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From phonons to relaxons

Re-express phonon populations in terms of relaxon populations
_— (04
An,(x,t) = Z fa(X, )07
0%
Change basis of the Boltzmann transport equation

kBCT2 (argz, 00 + 9T(x, 1) V“)

| Ofy (x t) Zvaa | ):_fa(x,t)

Instead of phonons, we study relaxon populations f..



Exact relaxation times

Consider a system at thermal equilibrium where only one mode is
excited uniformly in space ( T=const and Vf=0):

\/kBCT2 (aTg;' Y 0la) + 9T(x.) V“)

I Gf (x, t) Zvaa’ Vi (x. t) = fa(x, t)
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[rim ("5 )
I af (x, t) ZVQM _ fa(:,t)
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fo(t) = fa(to)e_t/"“



Exact relaxation times

Consider a system at thermal equilibrium where only one mode is
excited uniformly in space ( T=const and Vf=0):

Ofa(t) 1

—_—f
ot T,, (1)

Populating a state a at time to, it relaxes as an exponential:

Relaxons have a
relaxation time!

fo(t) = fa(to)e—t/T“

Rotating back to phonons: Any(t) = X o= £, (to)e /™
«  [PNAS, 113, 43 (2016)]

The phonon decay depends on the initial conditions:
= ill-defined phonon relaxation times

Only relaxons have well-defined relaxation times!



Bulk thermal conductivity

Consider steady state (time disappears) and a bulk system
(no spatial depencence):

T
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Bulk thermal conductivity

Consider steady state (time disappears) and a bulk system
(no spatial depencence):

s (ot + 97t -v)
SR T -

C ;i f
Vi—
\/kBT2 * To

Which we can solve analytically!




Bulk thermal conductivity
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Bulk thermal conductivity

The thermal conductivity in the basis of relaxons is:

k = Z CV. A\,

/ \ /\a — VaTa
Relaxon mean free path

Relaxon specific heat
Relaxon velocity

C, same V relaxon
1 \/ﬁ (M, + 1)hw
_ = E 0 o) 0 _ p\y 7
Vo = Y, 9# VP«QM 9# _ V/CkgT2
L

We recover a kinetic-gas like description of thermal transport, with
new estimates of time, length and velocity scales of transport.

—> we identify relaxons with the heat carriers



Contribution to k (%)

Graphene @ 300K

: Graphene

' Phonon lifetimes
VS
Relaxon relaxation times.

= relaxons
e phonons ™

_ Phonon scattering time scale
. ~ 10-100ps

Heat flux time scale
>> 1000ps

o' 102 10° 10t 10°  10° [PRX 6, 041013 (2016)]

Relaxation time (ps)
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Two examples: graphene (where the SMA underestimates fails) and
silicon (where the SMA gives good conductivity)

The theory changes the relevant time scale in graphene by orders of
magnitude; and few modes (~20) contribute for most of transport



Velocities

10 F T T T 10 p U
Graphene™ % | Silicon % .g
| ? 0
1005‘ relaxons | E 1005— .y phonons | @ =
; ! ] ; 04 ©
< 10 8 = — 10 F relaxons S 3
X i | X »
~— = OI ~
< _2- 8' < ]
-l9 10 S 8| IE "9 10 IE
5| 3 5
5 | 5
2 107} 3 2107 E
5 . I 5
onons
o P o )
10 107¢ :
107 10 E
-6 il

L1l L1 L1 10- L L it L 11 L1l L1 11 L1111l
10 10° 10° 10* 10° 10" 10° 10" 10®° 10° 10* 10°

Velocity (m/s) Velocity (m/s)

The velocity of heat transport is not the speed of sound (20km/s in
graphene, 18km/s in silicon), but much smaller (0.1 - 1 km/s)



Mean free

paths
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The distances at which heat is dissipated by each mode is very
different from the phonon mean free paths.



Surface scattering

[Nano Letters ASAP, (2017)]

Typical interpretation: a phonon only travels for (1) the distance
between scattering events or (2) the sample length L.
Therefore, the effective phonon relaxation time is:

11 VW

? Ta o L ? Let’s see...
111
N " Na L
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Silicon
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Thermal conductivity (W/mK)
oo
o

60 -

401 — SMA

20 - - Relaxons
—e— EXp

10 1072 107! 10° 10! 102  10°

Size (microns)
Exp: Nano Lett. 107, 11 (2011)

In silicon, the traditional approach works for phonons, but
results for relaxons are off by two orders of magnitude.
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Exp: Nano Lett. 107, 11 (2011)

In silicon, the traditional approach works for phonons, but
results for relaxons are off by two orders of magnitude.

Question: why do we use this relation in first place? 1 1

[Phys. Rev. 33, 92 (1961)] T, Ty
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SMA surface scattering

We study a 2D ribbon, of finite
width but infinite length

yA

> X
. SMA
_ n
ny, = ny + Any és Fv, - Vn, = —v ZQ““/AnM/
w

on An
6# v, - VAn, = T:

v, - VT



SMA surface scattering

We study a 2D ribbon, of finite
width but infinite length

yA

> X
. SMA
_ n
n, = n, +An, %{ | VM'V”u:_vgﬂﬂﬂ'Anﬂ'
on An
v, VT aT“ ~v, - VAn, = 'T:

A finite sizes system doesn’t have translational invariance:
Any(r) depends on space. In the chosen geometry, we have:

VyGAn“(y) - ony, x An,(y)
B Oy - 9T H T,




SMA surface scattering

We must solve the following BTE:
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A
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This is a linear differential equation that we can solve exactly.



SMA surface scattering

We must solve the following BTE:

N 0An,(y)
LT By

o, . .
| Anﬂ(y) — a# A;L

This is a linear differential equation that we can solve exactly.

Case 1: v, = 0: the phonon travels parallel to the surface;
it’s population is the same as in the bulk case;

Anu(y) = An2"



SMA surface scattering

We must solve the following BTE:

0An,(y) on
4 M | — K\ X
" By - Any(y) 37 AL

This is a linear differential equation that we can solve exactly.

Case 1: v, = 0: the phonon travels parallel to the surface;
it’s population is the same as in the bulk case;

Anu(y) = An2"

Case 2: v, >0 is more involved (the case v¥,< 0 is similar).

Any(y) = A ZUIK+CM Y



SMA surface scattering

_ bulk —y /A
Anu — Anu + ¢y e M

We must use a boundary condition. Ziman proposed to relate it
with the surface phonon reflectivity:

The number of phonons traveling away from the surface must be

equal to the reflected number of phonons that were traveling
against it:

W W
An“(y — _? Vl'); > O) — Z RZ/AnIJ', <y —_— T VF):, < O)

7

2

| -
A
\W/2 +

>
X




SMA surface scattering

Suppose perfect absorbance (R=0):

Any(y) = Ank(1—e %)
Any(y) = A”ELUIK
Finally, the thermal conductivity is:
k(y) _ Q(y) _ _ - Z X/’_)w“An“ — Jbulk

Note: thermal conductlwty is not a bulk property!

vf; >0
vf; <0
vl{ =0

o Aksurf(y)



SMA surface scattering

Final step: if we want to neglect the detailed space-dependence,
we cah average results in space:

ony, x 1 1
oOT Y = ( | )An“
vv/z
A d
IL W/W/2 n“ y) Yy
W /2 @Anu
i /- w2 Via (y)d Vi
b W/2 ~
T J- W/2 Anu(y)dy L

Take home message: surface effects must be studied in real space.
Results can be written in reciprocal space, but after averaging over
space



Surface scattering

Let’s do the same with relaxons. We start from the BTE:

C nOofs 1,
\/kBT2 °a+ZVa58y T




Surface scattering

Let’s do the same with relaxons. We start from the BTE:

~

nofs 1
\/kBT2 WZ oy " e
1

We make another auxiliary scallng (9o = f,) and get:
VTa
y) 998
Z /\aﬁ 8}/ _gOé + ga
Q;O : bulk solution (y) Z 0, VF{QS

045 =\ Ta V 5\/ : matrix with dlmen5|onallty of length

It’s a differential equation that can be solved analytically!



Surface scattering

The equation is trivial to solve in the basis of the eigenvectors of
the matrix A:

> Atsi = N i
B
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Surface scattering

The equation is trivial to solve in the basis of the eigenvectors of

the matrix A:
> Atsi = N i
B

= Zwaidi

Find a simpler differential equation

0 00
i 8_yd__d+d

Change the basis



Surface scattering

The equation is trivial to solve in the basis of the eigenvectors of
the matrix A:

> Atsi = N i
B

Change the basis

Jo = Z oid;

Find a simpler differential equation

0 o0
Afy)ﬁ—yd/ = —dj + di
With solutions

_ (¥)
d,'=d,-OO+C,'e Y/A

Same as before, but in a different basis



Surface scattering

Let’s think at the modes y,ias particles moving towards y>0 (if
A¥>0) or y<O0 (if A¥<0). The boundary condition is fixed like before:

(¥)
A7’ <0
If there’s no reflection at the surface (R=0), we find an analytical
solution of the BTE:

di = d>® — dl_<>oe—(y+%)/>\f-y) A >0
Wy /3 W) y

d; = d,-OO — dl-ooe_(y_T)/Aiy >\,- <0

di — dioo >\3/ =0



Surface scattering

With a little more algebra, finally, the thermal conductivity is:

Q
ky)=—o+
y+% y—%
-F N ko T g (3 e T A T e ¥ )a
— k> _ Aksurf(y)

 The conductivity is a bulk term minus a surface term;

« Conductivity isn't a bulk property: depends on where it is
measured, and, in general, on the shape of the material;

* The length scale of surface scattering is determined by the
eigenvalues of Nas, not by the relaxon mean free paths.

1 1 Va

\ I
/ I

T Ty [




Surface scattering

With a little more algebra, finally, the thermal conductivity is:

Q
ky)=—o+
y+% y‘%
Y N koY e (T e Tt T e T )
o ap Af_y)>0 Af.y)<0
— k> _ Aksurf(y)

 The conductivity is a bulk term minus a surface term;

« Conductivity isn't a bulk property: depends on where it is
measured, and, in general, on the shape of the material;

* The length scale of surface scattering is determined by the
eigenvalues of Nas, not by the relaxon mean free paths.

T / To [




MoS; monolayer

Ribbon geometry (finite width, infinite length)




MoS; monolayer
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: ® Friction °:
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= 10
x
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Contribution to thermal
conductivity from relaxon
Uua and reduction of
thermal condutivity from
mode (,Uai

Friction lengths are much
longer than carrier mean
free paths.



k(Wm' K"

MoS; monolayer
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Ribbon
|_
>
0 —
I
41-0.05
| | | | | | | _
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Width coordinate (um)

Heat
sink
22.1NO0S
1eoH

Thermal conductivity has a
minimum at the surfaces
and maximum at the center.

Temperature response
(AT= AE/C) is constant
along the ribbon width.

The same behavior is seen
in liquids (e.g. rivers):
phonons display
hydrodynamic behaviors

Hence, identify the
eigenvalues A/ as
“friction lengths”



MoS; monolayer

Ribbon

Surf-RTA ribbon -
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Surf-RTA is a model of
surface scattering often
seen in literature
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This mixes SMA and non-
SMA results and it’s
Incorrect

(1) theoretically and

(2) by an order of
magnitude (the
horizontal translation)

Qup — Qupr + Oppr
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Trends follow the
expected behavior;

The difference is bigger
at low temperatures,
where surface scattering
IS more important;

Note: the log-scale
compresses differences!



Second sound

[arXiv:1612.04317]
The Boltzmann transport equation admits wave-like solutions:

_ o i(k-r—wqt)
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The Boltzmann equation is a non-hermitian eigenvalue problem
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Waves have a dispersion relation, with complex frequencies:

W = W (k) = Ga(k) Taék)

An% (k) = |I%(k)|e" /™" sin(k - r — wa(k)t + ¢)
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Second sound

Population waves <= Temperature waves

1
Ang = Igeikr-wa  AE = 5 > hw,An, = CAT
L

Using this Ansatz, we obtain damped
wave solutions of temperature,
i.e. a basis set of second sound modes
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Conclusions

In 2D materials, phonon scattering is mostly of normal kind, thus:

The relaxation time approximation doesn’t hold;
Transport is mostly hydrodynamic (Poiseuille and Ziman regimes)

The low-temperature transport regimes of 3D materials are
found in 2D at room temperature (see also S. Lee);

Phonons aren’t ‘good’ heat carriers, because phonon scattering
isn’t directly related to heat flux dissipation;

Relaxons, the eigenvectors of the scattering matrix, are the true
heat carriers;

A kinetic theory of the relaxon gas describes exactly thermal
transport in crystals, revising time and length scales of transport.

Surface “scattering” is in fact an effect of the friction (viscosity)
of the ‘liquid’ of vibrations.



